Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur J Med Chem ; 249: 115118, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2178286

ABSTRACT

The design and synthesis of a series of peptide derivatives based on a short ACE2 α-helix 1 epitope and subsequent [i - i+4] stapling of the secondary structure resulted in the identification of a 9-mer peptide capable to compete with recombinant ACE2 towards Spike RBD in the micromolar range. Specifically, SARS-CoV-2 Spike inhibitor screening based on colorimetric ELISA assay and structural studies by circular dichroism showed the ring-closing metathesis cyclization being capable to stabilize the helical structure of the 9-mer 34HEAEDLFYQ42 epitope better than the triazole stapling via click chemistry. MD simulations showed the stapled peptide being able not only to bind the Spike RBD, sterically interfering with ACE2, but also showing higher affinity to the target as compared to parent epitope.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Epitopes , Peptides/pharmacology , Protein Binding
2.
J Org Chem ; 87(18): 12041-12051, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-2016521

ABSTRACT

The development of molecules able to target protein-protein interactions (PPIs) is of interest for the development of novel therapeutic agents. Since a high percentage of PPIs are mediated by α-helical structure at the interacting surface, peptidomimetics that reproduce the essential conformational components of helices are useful templates for the development of PPIs inhibitors. In this work, the synthesis of a constrained dipeptide isostere and insertion in the short peptide epitope EDLFYQ of the angiotensin-converting enzyme 2 (ACE2) α1 helix domain resulted in the identification of a molecule capable of inhibiting the SARS-CoV-2 ACE2/spike interaction in the micromolar range. Moreover, inhibition of SARS-CoV-2 3CLPro main protease activity was assessed as an additional inhibitory property of the synthesized peptidomimetics, taking advantage of the C-terminal Q amino acid present in both the ACE2 epitope and the Mpro recognizing motif (APSTVxLQ), thus paving the way to the development of multitarget therapeutics toward coronavirus infections.


Subject(s)
COVID-19 , Peptidomimetics , Amino Acids , Angiotensin-Converting Enzyme 2 , Dipeptides , Epitopes , Humans , Peptides/metabolism , Peptides/pharmacology , Peptidomimetics/pharmacology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL